Potentially complete basic opaque PBR shader
This commit is contained in:
parent
52cf51dc49
commit
d91b306972
107
src/shader.ts
107
src/shader.ts
@ -136,8 +136,6 @@ export function createShaderCode({
|
||||
normal,
|
||||
tangent,
|
||||
}: ShaderFlags): string {
|
||||
let varyingLocation = 0;
|
||||
|
||||
return `
|
||||
struct Vertex {
|
||||
@location(0) positionOS: vec3<f32>,
|
||||
@ -149,12 +147,12 @@ struct Vertex {
|
||||
|
||||
struct Varyings {
|
||||
@builtin(position) positionCS: vec4<f32>,
|
||||
@location(${varyingLocation++}) positionVS: vec4<f32>,
|
||||
${texCoord ? `@location(${varyingLocation++}) texCoord: vec2<f32>,` : ""}
|
||||
${lightTexCoord ? `@location(${varyingLocation++}) lightTexCoord: vec2<f32>,` : ""}
|
||||
${normal ? `@location(${varyingLocation++}) normalVS: vec3<f32>,` : ""}
|
||||
${normal && tangent ? `@location(${varyingLocation++}) tangentVS: vec3<f32>,` : ""}
|
||||
${normal && tangent ? `@location(${varyingLocation++}) bitangentVS: vec3<f32>,` : ""}
|
||||
@location(0) positionVS: vec4<f32>,
|
||||
${texCoord ? `@location(1) texCoord: vec2<f32>,` : ""}
|
||||
${lightTexCoord ? `@location(2) lightTexCoord: vec2<f32>,` : ""}
|
||||
${normal ? `@location(3) normalVS: vec3<f32>,` : ""}
|
||||
${normal && tangent ? `@location(4) tangentVS: vec3<f32>,` : ""}
|
||||
${normal && tangent ? `@location(5) bitangentVS: vec3<f32>,` : ""}
|
||||
}
|
||||
|
||||
struct PointLight {
|
||||
@ -208,6 +206,37 @@ struct ObjectUniforms {
|
||||
@group(1) @binding(6) var _EmissiveTexture: texture_2d<f32>;
|
||||
@group(1) @binding(7) var _TransmissionCollimationTexture: texture_2d<f32>;
|
||||
|
||||
const INV_PI: f32 = 0.31830987;
|
||||
|
||||
fn fresnelSchlick(dotVH: f32, f0: vec3<f32>) -> vec3<f32> {
|
||||
const f90 = vec3(1.0);
|
||||
return f0 + (f90 - f0) * pow(1.0 - dotVH, 5.0);
|
||||
}
|
||||
|
||||
fn visibilityGGX(dotNL: f32, dotNV: f32, alpha: f32) -> f32 {
|
||||
let alphaSquared = alpha * alpha;
|
||||
|
||||
let vGGX = dotNL * sqrt(dotNV * dotNV * (1.0 - alphaSquared) + alphaSquared);
|
||||
let lGGX = dotNV * sqrt(dotNL * dotNL * (1.0 - alphaSquared) + alphaSquared);
|
||||
let GGX = vGGX + lGGX;
|
||||
return GGX > 0.0 ? 0.5 / GGX : 0.0;
|
||||
}
|
||||
|
||||
fn distributionGGX(dotNH: f32, alpha: f32) -> f32 {
|
||||
let alphaSquared = alpha * alpha;
|
||||
let tmp = dotNH * dotNH * (alphaSquared - 1.0) + 1.0;
|
||||
return alphaSquared * INV_PI / (tmp * tmp);
|
||||
}
|
||||
|
||||
fn toneMapAcesNarkowicz(color: vec3<f32>) -> vec3<f32> {
|
||||
const A: f32 = 2.51;
|
||||
const B: f32 = 0.03;
|
||||
const C: f32 = 2.43;
|
||||
const D: f32 = 0.59;
|
||||
const E: f32 = 0.14;
|
||||
return saturate((color * (A * color + B)) / (color * (C * color + D) + E));
|
||||
}
|
||||
|
||||
fn screenSpaceMatrixTStoVS(positionVS: vec3<f32>, normalVS: vec3<f32>, texCoord: vec2<f32>) -> mat3x3<f32> {
|
||||
let q0 = dpdx(positionVS);
|
||||
let q1 = dpdy(positionVS);
|
||||
@ -298,5 +327,67 @@ fn frag(fragment: Varyings) -> @location(0) vec2<f32> {
|
||||
` : `
|
||||
let actualNormalVS = geometricNormalVS;
|
||||
`}
|
||||
|
||||
let viewDirectionVS = normalize(-positionVS);
|
||||
let dotNV = saturate(dot(actualNormalVS, viewDirectionVS));
|
||||
let alpha = roughness * roughness;
|
||||
|
||||
var f0 = vec3(pow((ior - 1.0) / (ior + 1.0), 2.0));
|
||||
f0 = mix(f0, baseColor, metallic);
|
||||
|
||||
var outgoingRadiance = vec3(0.0);
|
||||
|
||||
for (var i: u32 = 0; i < _Global.pointLightCount; ++i) {
|
||||
let light = _PointLights[i];
|
||||
|
||||
let lightPositionVS = (_Global.matrixWStoVS * vec4(light.positionWS, 1.0)).xyz;
|
||||
let lightDirectionVS = normalize(lightPositionVS - positionVS);
|
||||
let lightDistance = distance(positionVS, lightPositionVS);
|
||||
let lightAttenuation = 1.0 / (lightDistance * lightDistance);
|
||||
let halfVectorVS = normalize(lightDirectionVS + viewDirectionVS);
|
||||
|
||||
let dotVH = saturate(dot(viewDirectionVS, halfVectorVS));
|
||||
let dotNH = saturate(dot(actualNormalVS, halfVectorVS));
|
||||
let dotNL = saturate(dot(actualNormalVS, lightDirectionVS));
|
||||
|
||||
let incomingRadiance = light.color * attenuation;
|
||||
|
||||
let fresnel = fresnelSchlick(dotVH, f0);
|
||||
let visibility = visibilityGGX(dotNL, dotNV, alpha);
|
||||
let distribution = distributionGGX(dotNH, alpha);
|
||||
|
||||
let scatteredFactor = (1.0 - fresnel) * (1.0 - metallic) * baseColor * INV_PI;
|
||||
let reflectedFactor = fresnel * visibility * distribution;
|
||||
|
||||
outgoingRadiance += (scatteredFactor + reflectedFactor) * incomingRadiance * dotNL;
|
||||
}
|
||||
|
||||
for (var i: u32 = 0; i < _Global.directionalLightCount; ++i) {
|
||||
let light = _DirectionalLights[i];
|
||||
|
||||
let lightDirectionVS = normalize((_Global.matrixWStoVS * vec4(light.directionWS, 0.0)).xyz);
|
||||
let halfVectorVS = normalize(lightDirectionVS + viewDirectionVS);
|
||||
|
||||
let dotVH = saturate(dot(viewDirectionVS, halfVectorVS));
|
||||
let dotNH = saturate(dot(actualNormalVS, halfVectorVS));
|
||||
|
||||
let incomingRadiance = light.color;
|
||||
|
||||
let fresnel = fresnelSchlick(dotVH, f0);
|
||||
let visibility = visibilityGGX(dotNL, dotNV, alpha);
|
||||
let distribution = distributionGGX(dotNH, alpha);
|
||||
|
||||
let scatteredFactor = (1.0 - fresnel) * (1.0 - metallic) * baseColor * INV_PI;
|
||||
let reflectedFactor = fresnel * visibility * distribution;
|
||||
|
||||
outgoingRadiance += (scatteredFactor + reflectedFactor) * incomingRadiance * dotNL;
|
||||
}
|
||||
|
||||
outgoingRadiance += _Global.ambientLight * baseColor * occlusion;
|
||||
|
||||
let toneMappedLinearColor = toneMapAcesNarkowicz(outgoingRadiance);
|
||||
let toneMappedSrgbColor = pow(toneMappedLinearColor, vec3(1.0 / 2.2));
|
||||
|
||||
return vec4(toneMappedSrgbColor, 1.0);
|
||||
}`;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user